72. Let (a, b, c, d) be a randomly selected ordered quadruple of positive integers such that $1 \leq a, b, c, d \leq 10$. ("Randomly selected" means all quadruples are equally likely.) What is the probability that ad - bc is odd?

(A)
$$\frac{3}{16}$$
 (B) $\frac{1}{4}$ (C) $\frac{3}{8}$ (D) $\frac{1}{2}$ (E) $\frac{3}{4}$

73. If $\sin^2 \alpha + \cos^2 \beta = \frac{7}{9}$, $\sin^2 \beta + \cos^2 \gamma = \frac{2}{3}$, and $\sin \gamma + \cos \alpha = \frac{2\sqrt{7}}{3}$, then what is the value of $(\sin \gamma)(\cos \alpha)$?

(A)
$$\frac{1}{9}$$
 (B) $\frac{1}{3}$ (C) $\frac{4}{9}$ (D) $\frac{2}{3}$ (E) $\frac{7}{9}$

- 76. The lengths of the legs of a right triangle are $\log 8$ and $\log 16$, and the length of the hypotenuse is $\log x$. What is x?
- 77. The quadratic equation $x^2 + 4ax 4.5a = 0$ has two solutions, x_1 and x_2 , such that $x_1^2 + x_2^2 = 25$. What is a possible value of parameter *a*?

(A) $\sqrt{2}$ (B) $2\sqrt{2}$ (C) 1 (D) 0 (E) -1

78. Cylinder C_1 , whose height and diameter are equal, is inscribed in sphere S. S is inscribed in cylinder C_2 , whose height and diameter are also equal. What is the ratio of the volumes of C_2 and C_1 ?

(A) 2 (B) 4 (C) 8 (D)
$$\sqrt{2}$$
 (E) $2\sqrt{2}$

- 79. The population of a certain country grows geometrically. It increased from 3 million people in 2001 to 6 million in 2007. What year will it reach 12 million?
- 80. In how many ways can the number 2013 be written as the sum of two or more consecutive positive integers?
- 81. What is the number of real solutions of the equation

$$(x^2 - 5x + 5)^{(x^2 + 8x + 12)} = 1?$$

82. The number $\sqrt{2009 \cdot 2010 \cdot 2011 \cdot 2012 + 1}$ is a positive integer. What are its rightmost three digits?

(A) 099 (B) 101 (C) 109 (D) 111 (E) 121

- 85. Members of the Alpha Club have created an ornament to designate membership in the club. The ornament consists of a hemisphere with radius 2 cm and a cone with radius 2 cm and altitude 2 cm. The base of the cone is joined to the flat surface of the hemisphere. What is the surface area of the ornament, in cm²?
 - (A) 12π (B) $\pi(8+4\sqrt{2})$ (C) $\pi(4+8\sqrt{2})$ (D) $12\sqrt{2}\pi$ (E) 24π